Nonlinear Biomedical Physics

EPJ A - The Similarity Renormalization Group for Three-Body Interactions in One Dimension

One important message that has emerged from developments of effective field theories and effective Hamiltonians for nuclear physics is that many-body forces are inevitable whenever degrees of freedom are eliminated. At the same time, first-principles calculations have shown that two-body forces alone are not able to give an accurate account of the energies of light nuclei and the saturation of nuclear matter. Three- (and possibly more-) body forces are thus essential in low-energy nuclear physics.

Read more...

EPJ A – Validating Aspects of the Strong-Coupling Regime of QCD

EPJ A – Validating Aspects of the Strong-Coupling Regime of QCD

A key to our understanding of Quantum Chromodynamics (QCD) in the strong regime is our ability to reproduce the hadronic excitation spectrum. Up to now, and due to their limited predictive power, quark models forecast of this spectrum at high excitation energies is unsatisfactory and is dubbed ``the missing resonances problem”. To explore the high excitation energies in the hadron spectrum production or scattering of heavier mesons from a nucleon target is essential.

Read more...

EPJ A broadens its scope in heavy ion physics

EPJ A broadens its scope in heavy ion physics by merging with the Acta Physica Hungarica A - Heavy Ion Physics (APH A) as of January 1st, 2007. APH A, a well respected journal in the field has emerged from the Acta Physics Hungarica, initially covering all areas of physics, in the 1990s.

Section Editors-in-Chief
W. Klonowski, A. Stefanovska, J. Tuszynski, M.-T. Huett and V. Jirsa
ISSN (Electronic Edition): 2195-0008

© EDP Sciences